55 research outputs found

    Evaluation and Comparation of a Novel Surgical Technique and Hemivertebra Resection to the Correction of Congenital Cervical Scoliosis in Lower Cervical and Cervicothoracic Spine

    Get PDF
    Objective To report concave-side distraction technique to treat congenital cervical scoliosis in lower cervical and cervicothoracic spine. To evaluate and compare clinical and radiographic results of this procedure with classic hemivertebra resection procedure. Methods This study reviewed 29 patients in last 13 years. These patients were divided into convex-side resection group (group R) and concave-side distraction group (group D). Radiographic assessment was based on parameter changes preoperatively, postoperatively and at last follow-up. Demographic data, surgical data and complications were also evaluated and compared between the 2 groups. Results In group R, mean age was 8.9 ± 3.3 years and follow-up was 46 ± 18 months. Operation time and blood loss averaged 500 ± 100 minutes, 703 ± 367 mL. In group D, mean age was 9.9 ± 2.8 years and follow-up was 34 ± 14 months. Operation time and blood loss averaged 501 ± 112 minutes, 374 ± 181 mL. Structural Cobb angle was corrected from 29.4° ± 12.5° to 5.3° (2.1°–18.1°) (p = 0.001) and 33.7° ± 14.1° to 12.8° ± 11.4° (p < 0.001) in groups R and D. Compensatory Cobb angle had a spontaneous correction rate of 59.6% (40.0%–80.8%) and 59.7% ± 23.0% in groups R and D. Mandibular incline, clavicle angle and spine coronal balance were significantly improved at last follow-up in both groups. All correction rates were not statistically different between groups. However, group D had significant less blood loss (p < 0.001) and operation time (p = 0.004) per vertebra than group R. Seven patients developed C5 nerve root palsy and recovered by 6 months of follow-up. Conclusion Both surgical procedures are safe and effective in correcting congenital cervical scoliosis. But concave-side distraction technique has less blood loss and time-consuming during surgery, which provides a better option for the treatment of congenital cervical scoliosis

    Analysis of Global Sagittal Postural Patterns in Asymptomatic Chinese Adults

    Get PDF
    Study DesignA prospective imaging study.PurposeTo characterize the distribution of the global sagittal postural patterns in asymptomatic Chinese adults using Roussouly classification.Overview of LiteratureThe norms of sagittal parameters in asymptomatic Chinese population have been previously described, but no report described their global sagittal postural patterns as characterized by Roussouly classification.MethodsA cohort of 272 asymptomatic Chinese adults was recruited. Data was assimilated by reviewing the films for each subject. Sagittal parameters were measured and sagittal postural patterns were then determined according to Roussouly classification. The pattern distributions were compared across genders within the study cohort. We also compared the data across different ethnicities from our study and a previous study to further characterize Chinese sagittal postures.ResultsThe cohort included 161 males and 111 females, with mean age of 23.2±4.4 years. The average descriptive results were as below: pelvic incidence (PI) 46.4°±9.6°, thoracic kyphosis (TK) 24.2°±9.0°, lumbar lordosis (LL) 50.6°±10.6°, sacral slope (SS) 37.2°±7.6°, pelvic tilt (PT) 9.4°±6.8°, spinosacral angle (SSA) 131.1°±7.5° and sagittal vertical axis (SVA) 17.24±32.36 mm. Despite a significant difference between two genders in LL, PI, SSA, and SVA, no difference was found in the distribution of Roussouly types among them. 47.8% of our cohort belonged to Roussouly type 3, while type 1, 2 and 4 comprised 23.2%, 14.0% and 15.1% of the subjects, respectively. Roussouly classification was capable of categorizing sagittal parameters except for the PT. This study also found that 4.4% of the recruited subjects belonged to the C7-anterior subgroup.ConclusionsFrom a characterization of the sagittal postural patterns of asymptomatic Chinese adults using Roussouly classification, the distribution was similar between Chinese males and females; however, from a cross-study comparison, it was different between asymptomatic Chinese and Caucasian adults, with a higher proportion of Roussouly type 3 in Chinese adults

    PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53–MDM2 loop

    Get PDF
    Cell growth and proliferation are tightly controlled via the regulation of the p53–MDM2 feedback loop in response to various cellular stresses. In this study, we identified a nucleolar protein called PAK1IP1 as another regulator of this loop. PAK1IP1 was induced when cells were treated with chemicals that disturb ribosome biogenesis. Overexpression of PAK1IP1 inhibited cell proliferation by inducing p53-dependent G1 cell-cycle arrest. PAK1IP1 bound to MDM2 and inhibited its ability to ubiquitinate and to degrade p53, consequently leading to the accumulation of p53 levels. Interestingly, knockdown of PAK1IP1 in cells also inhibited cell proliferation and induced p53-dependent G1 arrest. Deficiency of PAK1IP1 increased free ribosomal protein L5 and L11 which were required for PAK1IP1 depletion-induced p53 activation. Taken together, our results reveal that PAK1IP1 is a new nucleolar protein that is crucial for rRNA processing and plays a regulatory role in cell proliferation via the p53–MDM2 loop

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    STARS: Spatial-Temporal Active Re-sampling for Label-Efficient Learning from Noisy Annotations

    No full text
    Active learning (AL) aims to sample the most informative data instances for labeling, which makes the model fitting data efficient while significantly reducing the annotation cost. However, most existing AL models make a strong assumption that the annotated data instances are always assigned correct labels, which may not hold true in many practical settings. In this paper, we develop a theoretical framework to formally analyze the impact of noisy annotations and show that systematically re-sampling guarantees to reduce the noise rate, which can lead to improved generalization capability. More importantly, the theoretical framework demonstrates the key benefit of conducting active re-sampling on label-efficient learning, which is critical for AL. The theoretical results also suggest essential properties of an active re-sampling function with a fast convergence speed and guaranteed error reduction. This inspires us to design a novel spatial-temporal active re-sampling function by leveraging the important spatial and temporal properties of maximum-margin classifiers. Extensive experiments conducted on both synthetic and real-world data clearly demonstrate the effectiveness of the proposed active re-sampling function

    A Comprehensive Comparative Analysis of the Basic Theory of the Short Term Bus Passenger Flow Prediction

    No full text
    In order to meet the real-time public travel demands, the bus operators need to adjust the timetables in time. Therefore, it is necessary to predict the variations of the short-term passenger flow. Under the help of the advanced public transportation systems, a large amount of real-time data about passenger flow is collected from the automatic passenger counters, automatic fare collection systems, etc. Using these data, different kinds of methods are proposed to predict future variations of the short-term bus passenger flow. Based on the properties and background knowledge, these methods are classified into three categories: linear, nonlinear and combined methods. Their performances are evaluated in detail in the major aspects of the prediction accuracy, the complexity of training data structure and modeling process. For comparison, some long-term prediction methods are also analyzed simply. At last, it points that, with the help of automatic technology, a large amount of data about passenger flow will be collected, and using the big data technology to speed up the data preprocessing and modeling process may be one of the directions worthy of study in the future

    Unraveling synonymous and deep intronic variants causing aberrant splicing in two genetically undiagnosed epilepsy families

    No full text
    Abstract Background Variants identified through parent–child trio-WES yield up to 28–55% positive diagnostic rate across a variety of Mendelian disorders, there remain numerous patients who do not receive a genetic diagnosis. Studies showed that some aberrant splicing variants, which are either not readily detectable by WES or could be miss-interpreted by regular detecting pipelines, are highly relevant to human diseases. Methods We retrospectively investigated the negative molecular diagnostics through trio-WES for 15 genetically undiagnosed patients whose clinical manifestations were highly suspected to be genetic disorders with well-established genotype–phenotype relationships. We scrutinized the synonymous variants from WES data and Sanger sequenced the suspected intronic region for deep intronic variants. The functional consequences of variants were analyzed by in vitro minigene experiments. Results Here, we report two abnormal splicing events, one of which caused exon truncating due to the activation of cryptic splicing site by a synonymous variant; the other caused partial intron retention due to the generation of splicing sites by a deep intronic variant. Conclusions We suggest that, despite initial negative genetic test results in clinically highly suspected genetic diseases, the combination of predictive bioinformatics and functional analysis should be considered to unveil the genetic etiology of undiagnosed rare diseases
    corecore